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Abstract
The exact solutions for arbitrary electromagnetic beams in bianisotropic media
are constructed. The solutions are expressed using tensor Fourier transform
whose physical meaning is the superposition of partial waves. We use
cylindrical partial waves (vector Bessel beams) and derive exact and paraxial
solutions for cylindrically symmetric beams in isotropic, bi-isotropic and
bianisotropic media. The comparison of the spatial evolution of vector Bessel–
Gauss beams in different media is made.

PACS numbers: 41.85.−p, 78.20.Ci

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Maxwell’s equations can be written in such coordinate frames as Cartesian, cylindrical and
spherical coordinates. The general solution of Maxwell’s equations is expressed by means
of a superposition of partial waves. In our paper cylindrical eigenwaves are used. The
choice of such waves is caused by wide applications of cylindrically symmetric solutions
in electrodynamics. For instance, cylindrical waves describe Bessel beams [1, 2] and
electromagnetic radiation in circular fibres [3, 4].

There is the extensive class of bianisotropic media whose cylindrical eigenwaves are
described by the Bessel functions. Usually, such eigenwaves are called vector Bessel beams
[5–7]. Bessel beams can differ both in their order and transverse (radial) wavenumber. A
beam with some field distribution in its cross-section can be decomposed into cylindrical partial
waves (eigenwaves with different wavevectors), each of which does not change the transverse
field distribution during propagation, i.e. it is diffraction free. However, the superposition
of eigenwaves with differing transverse wavenumbers diffracts and can describe the spatial
evolution of Bessel–Gauss [8–11], Laguerre–Gauss [12, 13] and Hermite–Gauss [14] beams.
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So, the solution for an arbitrary beam can be written by means of the Fourier transform. In
the case of cylindrically symmetric solutions the transform is often called the Fourier–Bessel
transform. In papers [15, 16], the Fourier transform was utilized to study paraxial propagation
of cylindrically symmetric beams in uniaxial crystals.

The goal of the paper is to present the method for investigation of cylindrically symmetric
beams in a wide class of bianisotropic media. In section 2 of the present investigation the
method for calculating electric and magnetic fields of cylindrical eigenwaves in complex
media is given. Expressing the transverse field components by means of tensors we find the
main properties of vector Bessel beam solutions. Section 3 is devoted to the determination
of exact and paraxial solutions for electromagnetic beams with arbitrary field distribution in
bianisotropic media. In section 4 the beams in isotropic, bi-isotropic and bianisotropic media
are studied. The analysis of exact and paraxial cylindrically symmetric beams is carried out.
In section 5 the polarizations and intensities of Bessel–Gauss beams in isotropic, bi-isotropic
and bianisotropic media are compared.

2. Cylindrical eigenwaves in bianisotropic media: vector Bessel beams

Bianisotropic media are described by general constitutive equations, which include not only
dielectric permittivity ε and magnetic permeability µ tensors, but gyration tensors α and κ as
well:

D = εE + αH, B = κE + µH, (1)

where H,E,B and D are strengths and inductions of magnetic and electric fields. In
[17] constitutive equations for bianisotropic media were used for describing optical activity
(gyrotropy) of materials. General constitutive equations (1) allow us to describe some
special cases, such as bi-isotropic media, gyrotropic Faraday materials and anisotropic media.
Bianisotropic media can be created on the basis of composite materials [18]. It should be
noted that strongly investigated negative-refractive-index media have the same origin [19].
However, we can regard them as isotropic media, when the wavelength is much greater than
a typical period of a material.

Here, we consider only tensors of the form

ξ = ξ1Iz + ξ2ez ⊗ ez + iχξe
×
z , (2)

where (r, ϕ, z) are cylindrical coordinates, ξ corresponds to one of the tensors ε, µ, α, κ,e1 =
er (ϕ),e2 = eϕ(ϕ),e3 = ez are the basis vectors in cylindrical coordinates, ei ⊗ ej is
the dyad, e×

z is the tensor dual to the vector ez [17, 20, 21], Iz = 1 − ez ⊗ ez is the
projection operator onto the plane perpendicular to vector ez. There are some reasons to choose
tensors ε, µ, α, κ in the form (2). First, equation (2) is enough general for description of a
number of bianisotropic, gyrotropic and anisotropic media. Second, such tensors ε, µ, α, κ are
simplest for technological applications, because they have single optic axis ez. Third, tensors
ε, µ, α, κ in the form (2) allow us to make calculations easily, because cylindrical eigenwaves
propagating in such a medium retain cylindrical symmetry during their propagation and can
be expressed by the Bessel functions. Cylindrical eigenwaves are the stationary fields with
the following variable separation:(

H(r, t)

E(r, t)

)
= eiβz+iνϕ−iωt

(
H(r)

E(r)

)
, (3)

where β is the longitudinal wavenumber, ω is the wave frequency and ν is the azimuthal
number taking integer values. As a result, from the Maxwell equations it follows the system
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of ordinary differential equations of the first order [20] for tangential field components

dW (r)

dr
= ikM(r)W (r), (4)

where

M =
(

A B

C D

)
W =

(
H t

Et

)

A = i

kr
eϕ ⊗ eϕ + e×

r αIr + e×
r εer ⊗ v3 + e×

r (u + αer ) ⊗ v1

B = e×
r εIr + e×

r εer ⊗ v4 + e×
r (u + αer ) ⊗ v2

C = −e×
r µIr − e×

r µer ⊗ v1 + e×
r (u − κer ) ⊗ v3

D = i

kr
eϕ ⊗ eϕ − e×

r κIr − e×
r µer ⊗ v2 + e×

r (u − κer ) ⊗ v4

v1 = δr(κrrerαIr − εrrerµIr − κrru) v2 =δr(κrrerεIr − εrrerκIr − εrru)

v3 = δr(αrrerµIr − µrrerαIr + µrru) v4 =δr(αrrerκIr − µrrerεIr + αrru)

u = (β/k)eϕ − ν/(kr)ez δr = (εrrµrr − αrrκrr )
−1

εrr = erεer µrr = erµer αrr = erαer κrr = erκer .

(5)

Tangential components of strength vectors are situated in the plane (ϕ, z) and equal to
Et = IrE and H t = IrH , where Ir = 1 − er ⊗ er is the projection operator onto the
plane orthogonal to the unit vector er , k = ω/c is the vacuum wavenumber. We should note
that the system of differential equations of the first order for planar stratified media was derived
earlier (see, for example, papers [22, 23]).

As derived in [20], the longitudinal field components of the wave propagating in a
bianisotropic medium (2) yield to the differential equation

d2

dr2

(
Hz

Ez

)
+

1

r

d

dr

(
Hz

Ez

)
+

(
Q − ν2

r2

(
1 0
0 1

))(
Hz

Ez

)
= 0, (6)

where matrix Q is determined by the medium parameters and wavenumbers k, β. It is obvious
that the solutions of equation (6) are the Bessel functions of the first Jν and second Yν kind of
the order ν. Using the spectral decomposition for matrix Q one obtains(

Hz

Ez

)
= (c1Jν(q1r) + c3Yν(q1r)) �w1 + (c2Jν(q2r) + c4Yν(q2r)) �w2, (7)

where q2
1 , q2

2 are the eigenvalues of Q and �w1, �w2 are its eigenvectors. If we unite the
constants ci, i = 1, 2, 3, 4, into two vectors c1 and c2 lying in the plane (ϕ, z), then the
tangential components take the form

W =
(

η1(r)c1

ζ1(r)c1

)
+

(
η2(r)c2

ζ2(r)c2

)
, (8)

where planar tensors η1, ζ1 equal (planar tensors are defined as η1Ir = Irη1 = η1)

η1 = �e1 �w1Jν(q1r)ez ⊗ ez + �e1ẐJν(q1r) �w1eϕ ⊗ ez

+ �e1 �w2Jν(q2r)ez ⊗ eϕ + �e1ẐJν(q2r) �w2eϕ ⊗ eϕ

ζ1 = �e2 �w1Jν(q1r)ez ⊗ ez + �e2ẐJν(q1r) �w1eϕ ⊗ ez

+ �e2 �w2Jν(q2r)ez ⊗ eϕ + �e2ẐJν(q2r) �w2eϕ ⊗ eϕ.

(9)
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Replacing Jν by Yν one can get tensors η2, ζ2. In expression (9) we introduce unit two-
dimensional vectors �e1 = (1 0)T , �e2 = (0 1)T and matrix differential operator Ẑ equal

Ẑ = M(0)−1
zϕ

(
1

ik

d

dr
− 1

r
M(1)

zz

)
,

where constant matrices M(0)
zϕ ,M(1)

zz can be calculated using the following formulae:

M = M(0) +
1

r
M(1) +

1

r2
M(2) (10)

M(0) = M(0)
zϕ ez ⊗ eϕ + M(0)

ϕz eϕ ⊗ ez

M(1) = M(1)
zz ez ⊗ ez + M(1)

ϕϕ eϕ ⊗ eϕ M(2) = M(2)
ϕz eϕ ⊗ ez.

(11)

Using such denotations we can rewrite the matrix in Bessel equation (6) as Q = k2M(0)
zϕ M(0)

ϕz .
According to the relationship (9) the tangential field components W include the functions
Jν, dJν/dr and Jν/r , i.e. the Bessel functions determine the solution for cylindrical waves in
the medium (2). The waves characterized by η1, ζ1 and η2, ζ2 correspond to two independent
solutions of equations (4) which are expressed by the Bessel functions of the first and second
kind, respectively. Tensor notation for cylindrical waves is analogous to the notation for
forward and backward plane waves.

Transverse field components H⊥ and E⊥ lying in the plane z = const are usually
introduced for cylindrical beams. These components are continuous in the plane interfaces
between media and convenient for the investigation of electromagnetic-beam propagation in
multi-layer media. Cylindrical beams are the waves, the amplitudes of which cannot take
infinite values in their cross-section. In our case we can use only the waves expressed by the
Bessel functions of the first kind with η1 = η, ζ1 = ζ and c1 = c. Therefore, the tangential
field components of the beam have the form(

H t

Et

)
=

(
ηc

ζc

)
≡

(
η

ζ

)
c.

Taking into account the explicit form of the vector c = c1ez +c2eϕ , the following formula
for tangential components can be obtained:(

H t

Et

)
= c1

(
ηez

ζez

)
+ c2

(
ηeϕ

ζeϕ

)
. (12)

Each of the waves in equation (12) is independent one: at c2 = 0 the first wave propagates
and vice versa. These waves correspond to the ordinary and extraordinary waves arising
in anisotropic media and are characterized in general case by the different longitudinal
wavenumbers β1 and β2. Therefore, the field strengths of the cylindrical beam are
equal to(

H(r)

E(r)

)
= eiνϕ+iβ1zV (β1)

(
η(r, β1)ez

ζ(r, β1)ez

)
c1 + eiνϕ+iβ2zV (β2)

(
η(r, β2)eϕ

ζ(r, β2)eϕ

)
c2, (13)

where V is the matrix allowing to restore the total field vectors using their tangential
components

V =
(

Ir + er ⊗ v1 er ⊗ v2

er ⊗ v3 Ir + er ⊗ v4

)
. (14)

Introducing the initial strength vector in the beam cross-section a = c1er + c2eϕ one can
represent the fields as(

H(r)

E(r)

)
= eiνϕ

[
eiβ1zV (β1)

(
η(r, β1)ez ⊗ er

ζ(r, β1)ez ⊗ er

)
+ eiβ2zV (β2)

(
η(r, β2)eϕ ⊗ eϕ

ζ(r, β2)eϕ ⊗ eϕ

)]
a. (15)
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Then the transverse field components H⊥ = IzH and E⊥ = IzE equal(
H⊥(r)

E⊥(r)

)
= eiνϕ

(
τ(r, z)

σ (r, z)

)
a, (16)

where τ and σ are the planar tensors. Planar tensor τ is defined as τIz = Izτ = τ . Tensors τ

and σ are of the form

τ = eiβ1zf 1(r, β1) ⊗ er + eiβ2zf 2(r, β2) ⊗ eϕ

σ = eiβ1zg1(r, β1) ⊗ er + eiβ2zg2(r, β2) ⊗ eϕ.
(17)

Vectors f and g equal

f 1 = (eϕη(r, β1)ez)eϕ + (v1(β1)η(r, β1)ez + v2(β1)ζ(r, β1)ez)er

f 2 = (eϕη(r, β2)eϕ)eϕ + (v1(β2)η(r, β2)eϕ + v2(β2)ζ(r, β2)eϕ)er

g1 = (eϕζ(r, β1)ez)eϕ + (v3(β1)η(r, β1)ez + v4(β1)ζ(r, β1)ez)er

g2 = (eϕζ(r, β2)eϕ)eϕ + (v3(β2)η(r, β2)eϕ + v4(β2)ζ(r, β2)eϕ)er .

(18)

Formula (16) describes the vector Bessel beam (cylindrical eigenwave) in a bianisotropic
medium [7]. Tensors and vectors entered into equation (16) can be written both in Cartesian
and cylindrical coordinates. In Cartesian coordinates cylindrical basis vectors er ,eϕ,ez

depend on azimuthal coordinate ϕ, while Cartesian basis vectors are constant. In cylindrical
coordinates the azimuthal angle enters into Cartesian basis vectors. Further in this paper, we
will use cylindrical coordinates.

Tensor notation (16) follows directly from solution of Maxwell’s equations. In such
notation the coordinate dependence of the fields is separated from constant vector a determined
by the initial conditions. It is the most important result of this section, because the constructing
of an arbitrary vector beam is based on this separation.

One can note that r dependence in each vector f and g is expressed by the functions
dJν/dr and Jν/r , which can be written by means of the Bessel functions of the orders ν − 1
and ν + 1. That is why the r dependence of the tensors τ and σ takes the form

τ = Jν−1(qr)τ−(z) + Jν+1(qr)τ +(z), σ = Jν−1(qr)σ−(z) + Jν+1(qr)σ +(z). (19)

Generally, tensors τ± and σ± should be considered as planar. However, these tensors are
dyads in examples calculated in section 4. Further we suppose that tensors τ± and σ± are
dyads. For dyads τ± and σ± one can always choose such initial vector a which makes vanish
one of the dyads. Therefore, the beams described by the Bessel functions of the orders ν − 1
and ν + 1 are independent.

Taking into account z dependence we represent tensors τ± and σ± as follows:

τ± = p± ⊗ (
eiβ1zp±

1 + eiβ2zp±
2

)
, σ± = s± ⊗ (

eiβ1zs±
1 + eiβ2zs±

2

)
, (20)

where p±,p±
1,2, s

±, s±
1,2 are q-dependent vectors.

3. Constructing of an arbitrary beam using cylindrical partial waves

Formula (16) describes the family of vector Bessel beams with different azimuthal numbers
ν and transverse (radial) wavenumbers q. The numbers q enter into tensors η and ζ , as well
as into longitudinal wavenumbers β1,2. For example, in an isotropic medium longitudinal
wavenumbers equal β1 = β2 =

√
k2εµ − q2. Transverse wavenumbers are the same for
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both independent waves. An arbitrary vector function can be written as the superposition of
cylindrical partial waves:(

H⊥(r, ϕ, z)

E⊥(r, ϕ, z)

)
=

∞∑
ν=−∞

∫ ∞

0
eiνϕ

(
τν(r, z, q)

σν(r, z, q)

)
a(q, ν)q dq. (21)

Vector a(q, ν) can be expressed by means of a known electric field determined in the
initial plane z = 0. Of course, magnetic field can be initial field, too. From equation (21) it
follows the values of electric field in the plane z = 0:

E⊥(r, ϕ, 0) =
∞∑

ν=−∞

∫ ∞

0
eiνϕσν(r, 0, q)a(q, ν)q dq. (22)

Integrating over ϕ we sum up over ν as follows:

E⊥(r, ν, 0) =
∫ ∞

0
eiνϕσν(r, 0, q)a(q, ν)q dq, (23)

where

E⊥(r, ν, 0) = 1

2π

∫ 2π

0
e−iνϕ′

E⊥(r, ϕ′, 0) dϕ′.

Equation (23) describes tensor link between electric field vector E⊥(r, ν, 0) and its Fourier
transform a(q, ν). This link can be called tensor Fourier transform. Inverse tensor Fourier
transform is determined by tensor �ν :

a(q, ν) =
∫ ∞

0
�ν(r

′, 0, q)E⊥(r ′, ν, 0)r ′ dr ′. (24)

By substituting expression (24) into (23) we obtain equation

E⊥(r, ν, 0) =
∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′σν(r, 0, q)�ν(r

′, 0, q)E⊥(r ′, ν, 0) (25)

from which planar tensor �ν should be found. Expression (25) is analogous to the well-known
Fourier–Bessel transform [24]

f (r) =
∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′Jν(qr)Jν(qr ′)f (r ′). (26)

Since tensor σ is determined by formulae (19) and (20), one can find tensor � as follows:

�ν(r
′, 0, q) = Jν−1(qr ′)

e×
z

(
s+

1 + s+
2

) ⊗ s+e×
z

N1N2
+ Jν+1(qr ′)

e×
z

(
s−

1 + s−
2

) ⊗ s−e×
z

N1N2
, (27)

where N1 = (
s−

1 +s−
2

)
e×

z

(
s+

1 +s+
2

)
, N2 = s+e×

z s− are normalization coefficients. The product
of tensors is equal to

σν(r, 0, q)�ν(r
′, 0, q) = Jν−1(qr)Jν−1(qr ′)

s− ⊗ s+e×
z

N2
+ Jν+1(qr)Jν+1(qr ′)

s+ ⊗ e×
z s−

N2
.

(28)

By substituting (28) into (25) and integrating over q and r ′ we get to the identity

E⊥(r, ν, 0) =
(

s− ⊗ s+e×
z

N2
+

s+ ⊗ e×
z s−

N2

)
E⊥(r, ν, 0) ≡ IzE⊥(r, ν, 0). (29)

Hence, tensor � is derived correctly, and tensor Fourier transform (25) is satisfied. It should
be noted that only for dyads τ± and σ±, one can find the inverse tensor Fourier transform,
because only in this case the product (28) can be written without cross terms containing the
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products of the Bessel functions Jν∓1(qr)Jν±1(qr ′). That is indirect confirmation that tensors
τ± and σ± are dyads for all media of the form (2).

By substituting tensor � into equation (21) we derive the following general formula for
transverse electric field strength of an arbitrary beam in a bianisotropic medium:

E⊥(r, ϕ, z) = 1

2π

∞∑
ν=−∞

eiνϕ

∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′ ∑

j=1,2

eiβj (q)z
(
Jν−1(qr)Jν−1(qr ′)ρ−

j (q)

+ (−1)j−1Jν−1(qr)Jν+1(qr ′)ρ−(q) + (−1)j−1Jν+1(qr)Jν−1(qr ′)ρ+(q)

+ Jν+1(qr)Jν+1(qr ′)ρ+
j (q)

) ∫ 2π

0
dϕ′ e−iνϕ′

E⊥(r ′, ϕ′, 0), (30)

where dyads ρ depend on transverse wavenumber and equal

ρ±
j = s±

j e×
z

(
s∓

1 + s∓
2

)
N1N2

s± ⊗ s∓e×
z , ρ± = s±

1 e×
z s±

2

N1N2
s± ⊗ s±e×

z . (31)

Index j enumerates the eigenwaves in a bianisotropic medium. Formula (30) expresses
an exact wave evolution for given field strengths in beam cross-section z = 0. Calculating the
product τ(r, z, q)�(r ′, 0, q) in equation (21) the magnetic field can be found. It is obvious
that the formula for magnetic field is more cumbersome than that for electric field.

In paraxial approximation the transverse wavenumber q is supposed to be much less than
wavenumber k. Since numbers q2 are the eigenvalues of matrix Q in equation for longitudinal
field components (6), the longitudinal wavenumber β depends on q2. The propagation constant
β can be expanded into series as β(q) ≈ β(0) − q2/β̃. In paraxial propagation all tensors ρ

are constant: ρ(q) ≈ ρ(0) = const. Then, from formula (30) we get to expression for the
beam electric field

E⊥(r, ϕ, z) =
∞∑

ν=−∞
eiνϕ

∫ ∞

0
r ′ dr ′ ∑

j=1,2

eiβj (0)z

×
[

β̃j

2iz
exp

(
iβ̃j

r2 + r ′2

4z

) (
Iν−1

(
β̃j rr

′

2iz

)
ρ−

j (0) + Iν+1

(
β̃j rr

′

2iz

)
ρ+

j (0)

)

+ (−1)j−1(Fj (r, r
′, z)ρ−(0) + Fj (r

′, r, z)ρ+(0))

]
E⊥(r ′, ν, 0). (32)

Here we use the following formula:∫ ∞

0
q dq exp(−αq2)Jν(γ q)Jν(δq) = 1

2α
exp

(
−γ 2 + δ2

4α

)
Iν

(
γ δ

2α

)
(33)

and designation

Fj (r, r
′, z) =

∫ ∞

0
q dq exp(−iq2z/β̃j )Jν−1(qr)Jν+1(qr ′), (34)

where Iν is the modified Bessel function. Paraxial wave is described by the complex formula,
but expression (32) is simpler than an exact solution (30), because integration over q is
eliminated.

4. Electromagnetic beams in complex media

We will not focus our attention on the computation of tensors τ and σ . They can be found
by means of formulae of section 2 (see the paper [7] as well). Tensors τ and σ are given for
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each media at once. In this investigation we emphasize the beam constructing using partial
wave superposition. To compare the results of beam propagation in different complex media
we choose the following cylindrically symmetric beam polarized in x direction:

E⊥(r, ϕ, 0) = eimϕf (r)ex. (35)

Choosing the function f (r) one can obtain field distributions for Bessel–Gauss beams,
Hermite–Gauss beams, Laguerre–Gauss beams, etc. Cartesian basis vector ex should be
written in cylindrical coordinates. It is convenient to express it using circular vectors e± as
follows:

ex = 1√
2
(eiϕe+ + e−iϕe−), e± = 1√

2
(er ± ieϕ).

The main properties of circular vectors are e2
± = 0,e+e− = 1. Hence, the Fourier

transform of the initial electric field distribution equals

E⊥(r, ν, 0) = f (r)√
2

(δν,m+1e+ + δν,m−1e−). (36)

4.1. Isotropic medium

An isotropic medium is characterized by the scalar values of dielectric permittivity ε and
magnetic permeability µ. Tensors τ and σ are equal to

τ(r, q) = exp(iβz)√
2q

(Jν−1(qr)e+ ⊗ (iβer + kεeϕ) + Jν+1(qr)e− ⊗ (−iβer + kεeϕ))

σ (r, q) = exp(iβz)√
2q

(Jν−1(qr)e+ ⊗ (iβeϕ − kµer ) − Jν+1(qr)e− ⊗ (iβeϕ + kµer )),

(37)

where β(q) =
√

k2εµ − q2. In the isotropic medium both eigenwaves coincide: β1 = β2 = β.
Comparing expression (37) with (19), (20), we note that tensors τ± and σ± are dyads composed
of the vectors

p± = e∓, p±
1 + p±

2 = ∓iβer + kεeϕ√
2q

, s± = e∓, s±
1 + s±

2 = ∓iβeϕ − kµer√
2q

.

According to equation (27) tensor � determining the inverse Fourier transform is of the
form

�ν(r
′, 0, q) = iq√

2kµβ
(Jν−1(qr ′)(iβer − kµeϕ) ⊗ e− + Jν+1(qr ′)(iβer + kµeϕ) ⊗ e+).

(38)

Tensors ρ entered into formula (30) are constant and equal to

ρ+
1,2 = 1

2e− ⊗ e+, ρ−
1,2 = 1

2e+ ⊗ e−, ρ+ = 1
2e− ⊗ e−, ρ− = − 1

2e+ ⊗ e+.

(39)

Therefore, the electric field of the vector beam varies during its propagation as follows:

E⊥(r, ϕ, z) =
∞∑

ν=−∞

∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′ eiβ(q)z+iνϕ(Jν−1(qr)Jν−1(qr ′)e+ ⊗ e−

+ Jν+1(qr)Jν+1(qr ′)e− ⊗ e+)E⊥(r ′, ν, 0). (40)

Electric field (40) is written as the superposition of left and right circularly polarized
beams. In such a way an arbitrary polarized vector beam can be described. The field strength
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(40) does not include the terms characterized by the products of the Bessel functions of the
orders ν − 1 and ν + 1. Magnetic field is expressed by significantly more complex formula

H⊥(r, ϕ, z) =
∞∑

ν=−∞

∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′ eiβ(q)z+iνϕ

[
2k2εµ − q2

2ikµβ(q)
(Jν−1(qr)Jν−1(qr ′)e+ ⊗ e−

− Jν+1(qr)Jν+1(qr ′)e− ⊗ e+) +
q2

2ikµβ(q)
(Jν+1(qr)Jν−1(qr ′)e− ⊗ e−

− Jν−1(qr)Jν+1(qr ′)e+ ⊗ e+)

]
E⊥(r ′, ν, 0). (41)

Note the existence of the functions Jν±1(qr)Jν∓1(qr ′) in the exact formula for the magnetic
field. They vanish in paraxial approximation. Paraxial solutions for the electric and magnetic
fields take the form

E⊥(r, ϕ, z) = − ik
√

εµ

z
eik

√
εµ(z+r2/z)

∞∑
ν=−∞

∫ ∞

0
r ′ dr ′ eik

√
εµr ′2/z+iνϕ

×
(

Iν−1

(
−ik

√
εµ

rr ′

z

)
e+ ⊗ e− + Iν+1

(
−ik

√
εµ

rr ′

z

)
e− ⊗ e+

)
E⊥(r ′, ν, 0) (42)

H⊥(r, ϕ, z) = −kε

z
eik

√
εµ(z+r2/z)

∞∑
ν=−∞

∫ ∞

0
r ′ dr ′ eik

√
εµr ′2/z+iνϕ

×
(

Iν−1

(
−ik

√
εµ

rr ′

z

)
e+ ⊗ e− − Iν+1

(
−ik

√
εµ

rr ′

z

)
e− ⊗ e+

)
E⊥(r ′, ν, 0). (43)

One can make sure that in paraxial approximation electric and magnetic field strengths are
connected with each other by the relationship E⊥ = −√

ε/µ(ez × H⊥), i.e. the constant
quantity

√
ε/µ is the impedance as for the plane waves in an isotropic medium.

Let us consider a cylindrically symmetric beam (35). By substituting such initial electric
field distribution into equation (40) we obtain

E⊥(r, ϕ, z) = eimϕgm(r, z)ex, (44)

where

gm(r, z) =
∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′ eiβ(q)zJm(qr)Jm(qr ′)f (r ′). (45)

In paraxial approximation the function gm(r, z) takes the form

gm(r, z) = k
√

εµ

iz
eik

√
εµz

∫ ∞

0
r ′ dr ′ exp

(
ik

√
εµ

r2 + r ′2

2z

)
Iν−1

(
k
√

εµrr ′

iz

)
f (r ′). (46)

Since the polarization of cylindrically symmetric beam does not change in an isotropic
medium, this electromagnetic beam can be considered as scalar one, while its evolution is
described using gm(r, z).

4.2. Bi-isotropic medium

Let a bi-isotropic medium is characterized by the scalar values of dielectric permittivity ε,
magnetic permeability µ and gyration parameters α = iχ, β = −iχ . In such a medium two
eigenwaves propagate. They have different longitudinal wavenumbers

β1(q) =
√

k2(
√

εµ − χ)2 − q2, β2(q) =
√

k2(
√

εµ + χ)2 − q2.
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Tensors τ and σ equal

τ = 1

q

√
ε

µ
(eiβ1zb1 ⊗ er + eiβ2zb2 ⊗ eϕ) σ = i

q
(−eiβ1zb1 ⊗ er + eiβ2zb2 ⊗ eϕ), (47)

where

b1 = 1√
2
(k(

√
εµ − χ) − β1)Jν−1(qr)e+ + 1√

2
(k(

√
εµ − χ) + β1)Jν+1(qr)e−

b2 = 1√
2
(k(

√
εµ + χ) + β2)Jν−1(qr)e+ + 1√

2
(k(

√
εµ + χ) − β2)Jν+1(qr)e−.

Therefore, vectors p and s depend on q in a complicated way. They can be written as
follows:

p± = e∓, p±
1 = 1

q

√
ε

2µ
(k(

√
εµ − χ) ± β1)er , p±

2 = 1

q

√
ε

2µ
(k(

√
εµ + χ) ∓ β2)eϕ

s± = e∓, s±
1 = − i√

2q
(k(

√
εµ − χ) ± β1)er , s±

2 = i√
2q

(k(
√

εµ + χ) ∓ β2)eϕ.

(48)

Tensors ρ are calculated using formulae (31):

ρ+
1 = a11e− ⊗ e+, ρ+

2 = −a22e− ⊗ e+, ρ−
1 = −a22e+ ⊗ e−,

ρ−
2 = a11e+ ⊗ e−, ρ+ = −a12e− ⊗ e−, ρ− = a21e+ ⊗ e+,

(49)

where

aij (q) = (k(
√

εµ − χ) + (−1)i−1β1)(k(
√

εµ + χ) + (−1)j−1β2)

2(k(
√

εµ + χ)β1 + k(
√

εµ − χ)β2)
.

We do not adduce the exact formula for the electric field, because its form is not simpler
than the general expression (30). In paraxial approximation an arbitrary vector beam in a
bi-isotropic medium is described by the following parameters:

β1(0) = k(
√

εµ − χ), β2(0) = k(
√

εµ + χ), β̃1,2 = 2β1,2

a11(0) = 1, a12(0) = a21(0) = a22(0) = 0.

So, the paraxial beam propagates as follows:

E⊥(r, ϕ, z) = eik
√

εµz

∞∑
ν=−∞

eiνϕ

∫ ∞

0
r ′ dr ′

[
k(

√
εµ + χ)

iz

× exp

(
ikχz + ik(

√
εµ + χ)

r2 + r ′2

2z

)
Iν−1

(
k(

√
εµ + χ)rr ′

iz

)
e+ ⊗ e−

+
k(

√
εµ − χ)

iz
exp

(
−ikχz + ik(

√
εµ − χ)

r2 + r ′2

2z

)
× Iν+1

(
k(

√
εµ − χ)rr ′

iz

)
e− ⊗ e+

]
E⊥(r ′, ν, 0). (50)

The paraxial solution represents the superposition of two eigenwaves, the eigenwaves
being right and left polarized. Applying formula (50) for cylindrically symmetric initial field
distribution (35) we obtain the electric strength vector

E⊥(r, ϕ, z) = 1√
2
eimϕ

(
g(1)

m e−e−iϕ + g(2)
m e+eiϕ

)
, (51)

where the functions g(1,2)
m follow from definition (45), in which we should substitute β1,2 for

β. In paraxial approximation the functions g(1)
m and g(2)

m are expressed by formula (46), in
which the quantity

√
εµ should be replaced by

√
εµ + χ and

√
εµ − χ , respectively.
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4.3. Bianisotropic medium

We consider a bianisotropic medium characterized by the following tensors:

ε = ε1Iz + ε2ez ⊗ ez, µ = µ1Iz + µ2ez ⊗ ez, α = κ = iχe×
z . (52)

A bianisotropic medium (52) can be applied for the description of the crystals of symmetry
classes 3m, 4 mm and 6 mm as in [25]. The waves propagate in the direction of an optic axis
of such crystals. In another interpretation constitutive equations (52) correspond to a moving
medium, velocity of which is directed along z-axis [26].

Planar tensors τ and σ take the form

τ = µ2(β1 − ikχ)

µ1q
eiβ1zb ⊗ er +

kε2

q
eiβ2z(ez × b) ⊗ eϕ

σ = −kµ2

q
eiβ1z(ez × b) ⊗ er +

ε2(β2 + ikχ)

ε1q
eiβ2zb ⊗ eϕ,

(53)

where vector b and wavevector longitudinal components for each eigenwave are written as

b = i√
2

(Jν−1e+ − Jν+1e−)

β1 =
√

k2ε1µ1 − k2χ2 − q2µ1/µ2, β2 =
√

k2ε1µ1 − k2χ2 − q2ε1/ε2.

(54)

Then, vectors p and s are of the form

p± = e∓, p±
1 = ∓ iµ2(β1 − ikχ)√

2µ1q
er , p±

2 = kε2√
2q

eϕ

s± = e∓, s±
1 = − kµ2√

2q
er , s±

2 = ∓ iε2(β2 + ikχ)√
2ε1q

eϕ.

(55)

Tensors ρ for a bianisotropic medium under consideration have the same form (39) as
that for an isotropic medium. The field evolution is described by the following formula:

E⊥(r, ϕ, z) =
∞∑

ν=−∞
eiνϕ

∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′

[
1

2
(eiβ1(q)z + eiβ2(q)z)(Jν−1(qr)Jν−1(qr ′)e+ ⊗ e−

+ Jν+1(qr)Jν+1(qr ′)e− ⊗ e+) +
1

2
(eiβ1(q)z − eiβ2(q)z)(−Jν−1(qr)

× Jν+1(qr ′)e+ ⊗ e+ + Jν+1(qr)Jν−1(qr ′)e− ⊗ e−)

]
E⊥(r ′, ν, 0). (56)

It is obvious that at β1 = β2 one can get to expression (40). By substituting the cylindrically
symmetric field distribution (35) into (56) we find the beam evolution

E⊥(r, ϕ, z) = 1
2 eimϕ

[(
g(1)

m + g(2)
m

)
ex + 1√

2

(
g+

me−eiϕ + g−
me+e−iϕ

)]
, (57)

where

g±
m =

∫ ∞

0
q dq

∫ ∞

0
r ′ dr ′(eiβ1(q)z − eiβ2(q)z)Jm±2(qr)Jm(qr ′)f (r ′).

In paraxial approximation β1(0) = β2(0) = k
√

ε1µ1 − χ2, β̃1 = 2β1(0)µ2/µ1, β̃2 =
2β1(0)ε2/ε1 should be used.

All solutions obtained above determine the polarization of electromagnetic beams by
means of circular vectors e±. These vectors form basis in the beam cross-section and allow us
to describe any wave polarization (linear, circular, elliptical). Exact formulae for electric field
are simplest for isotropic media and very complex for bi-isotropic media. The complexity of
the relationships is connected with the nonreciprocal properties of the media: the forward and
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.
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.

.

.

Figure 1. The energy density of the paraxial Bessel–Gauss beam propagating in an isotropic
(solid line) and a bi-isotropic (dashed line) media. Isotropic medium is characterized by the values
ε = 2.1, µ = 1. Bi-isotropic medium takes the following values: ε = 2.1, µ = 1, χ = 0.3. Beam
parameters: A = 1, q0/k = 0.5, kv0 = 3, m = 2.

backward beams propagate in different ways. The very complicated paraxial solution is the
solution for a beam in a bianisotropic medium, because it contains the cross terms with products
of the Bessel functions of the orders ν − 1 and ν + 1. The incident cylindrically symmetric
beam maintains its cylindrical symmetry only in isotropic media. Polarization of the beam in
isotropic media does not change during the beam propagation, too. In bianisotropic media the
beam can retain its symmetry in paraxial approximation. The example of such electromagnetic
beam is paraxial solution (50) in bi-isotropic media, because the beam energy density does not
depend on the azimuthal coordinate: |E⊥(r, ϕ, z)| = (∣∣g(1)

m

∣∣ +
∣∣g(2)

m

∣∣)/2.

5. Vector Bessel–Gauss beams

Let us investigate some characteristics (intensities and polarizations) of cylindrically
symmetric beams (35) by the example of Bessel–Gauss beam with the following field
distribution in cross-section z = 0:

f (r) = AJm(q0r) exp

(
− r2

v2
0

)
, (58)

where A and q0 are constants, v0 is the beam waist. In paraxial approximation the function
gm equals

gm(r, z) = Av2
0

Q(z)
exp

(
iknz − iq2

0v2
0z

2knQ(z)
− r2

Q(z)

)
Jm

(
q0v

2
0r

Q(z)

)
, (59)

where Q(z) = v2
0 + 2iz/(kn). Number n can take the following values: in isotropic media

n = √
εµ is the refractive index, in bi-isotropic media n1 = √

εµ + χ for the function g(1)
m

and n2 = √
εµ − χ for the function g(2)

m , in bianisotropic media n1 =
√

ε1µ1 − χ2µ2
/
µ1

for the function g(1)
m and n2 =

√
ε1µ1 − χ2ε2

/
ε1 for the functiong(2)

m . The functions g±
m in
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Figure 2. The real part of the electric field strength of the Bessel–Gauss beam in a bi-isotropic
medium at distances (a) kz = 10 and (b) kz = 20. The length of the arrows is fixed, that
is why they show only the direction of the field strength, but not its magnitude. Parameters:
ε = 2.1, µ = 1, χ = 0.1, A = 1, q0/k = 0.5, kv0 = 3, m = 2.
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Figure 3. The real part of the electric field strength of the Bessel–Gauss beam in a bianisotropic
medium (52) at distances (a) kz = 10 and (b) z = 20. Arrows show only the direction of the
field strength, but not its magnitude. Parameters: ε1 = 2.1, ε2 = 2.25, µ1 = 1, µ2 = 1, χ = 0.1,

A = 1, q0/k = 0.5, kv0 = 3,m = 2.

bianisotropic media are of the form

g±
m(r, z) = Av2

0

2
eikz

√
ε1µ1−χ2−q2

0 v2
0/4

∫ ∞

0
q dq

(
e−iq2z/(2n1) − e−iq2z/(2n2)

)
× e−q2v2

0/4Jm±2(qr)Im

(
qq0v

2
0

2

)
. (60)
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Figure 4. Normalized energy density of the Bessel–Gauss beam in a bianisotropic medium (52)
for distances (a) z = 10 and (b) kz = 20. Beam and media parameters are the same as in figure 3.

Paraxial cylindrically symmetric beams maintain their cylindrical symmetry in isotropic
and bi-isotropic media (see previous section). This property is demonstrated in figure 1.
The incident Bessel–Gauss beam strongly diffracts moving in z direction. The difference in
the intensity profiles is small for the beams in isotropic and bi-isotropic media. The main
difference for the beams is connected not with the field magnitude, but with polarization (vector
field direction). In isotropic media linearly polarized incident beam maintains its polarization,
while in bi-isotropic media the polarization varies in the beam cross-section and significantly
changes during propagation. In figure 2 there are the regions in the beam cross-section, in
which the beam is predominantly right or left circular polarized.

In the bianisotropic medium linearly polarized Bessel–Gauss beam mainly retains its
linear polarization due to the influence of the magnitudes g(1)

m and g(2)
m in expression (56). The

rest summands in this formula are essential only when the sum g(1)
m + g(2)

m tends to zero (it is,
for example, the beam centre in figure 3). The energy density of the Bessel–Gauss beam is
not cylindrically symmetric. During beam propagation the field maxima shift to the periphery
and become more indicative, while the field distribution gets the form of ellipse (see figure 4).

6. Conclusion

The offered approach for beam constructing can be applied to the wide class of media described
by expression (2). An important place in the approach takes the tensor notation of the transverse
field strengths of cylindrical eigenwaves (16), because it allows us to separate the initial field
vector from the coordinate dependence. To construct the beam with arbitrary field distribution
one should use the superposition of partial waves, i.e. the Fourier transform. There is the tensor
link between the electric field and its Fourier transform. Such link is called tensor Fourier
transform. The tensor Fourier transform arises naturally, because the tensor characteristics of
the media enter the Maxwell equations.

An arbitrary beam can be constructed as the superposition of a plane or spherical partial
waves, too. That is why in spite of the fact that the obtained exact formulae of the spatial field
evolution (30) are applicable to arbitrary beams, one awaits the wide use of these expressions
in optics of cylindrically symmetric and azimuthally modulated beams.
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